Acta Crystallographica Section C
Crystal Structure

Communications

ISSN 0108-2701

5-Amino-4-(4-diethylaminophenyl)-2-phenyl-7-(pyrrolidin-1-yl)-1,6-naph-thyridine-8-carbonitrile

L. Govindasamy, ${ }^{\text {a }}$ D. Velmurugan, ${ }^{\text {a* }}$ V. Raghukumar, ${ }^{\text {b }}$ II-Hawn Suh ${ }^{\text {c }}$ and V. T. Ramakrishnan ${ }^{\text {b }}$

${ }^{\text {a Department of Crystallography and Biophysics, University of Madras, Guindy }}$ Campus, Chennai 600 025, India, ${ }^{\mathbf{b}}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and ${ }^{\text {c }}$ Department of Physics, Chungnam National University, Toejon 305-764, Korea
Correspondence e-mail: crystal@giasmd01.vsnl.net.in

Received 16 April 1999
Accepted 6 July 1999
In the title compound, $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{6}$, the naphthyridine ring is almost planar with a dihedral angle of $5.4(1)^{\circ}$ between the pyridyl rings. The dihedral angles between the naphthyridine system and the diethylaminophenyl, phenyl and pyrrolidine rings are 53.1 (1), 19.8 (1) and $20.9(1)^{\circ}$, respectively. The pyrrolidine ring adopts a half-chair conformation. The molecule is stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions.

Comment

Naphthyridine derivatives have extensive pharmacological properties. These derivatives have anti-inflammatory (Di Braccio et al., 1997), antibacterial (against gram-positive organisms) (Hong et al., 1997), antitumour (Chen et al., 1997), cardiotonic (Mohan \& Mishra, 1997), and anticonvulsant and insecticidal (Damon \& Nadelson, 1981) properties. In addition, 1,6-naphthyridine derivatives are also used as novel potent adenosine $3^{\prime}, 5^{\prime}$-cyclic phosphate phosphodiesterase III

(I)
inhibitors (Singh et al., 1995). 1,6-Naphthyridine systems are known (Reed et al., 1988; Vinick, 1989) but few structural data have been reported (Balogh et al., 1986). The structure analysis of the title compound, (I), was carried out in order to determine the stereochemical and conformational changes induced by the substituents on the 1,6-naphthyridine ring system.

The molecule of (I) (Fig. 1) consists of a 1,6-naphthyridine ring system substituted with five different chemical substituents, namely a phenyl ring, a diethylaminophenyl ring, a pyrrolidine ring, a cyano group and an amino group. The $\mathrm{C} 25 \equiv \mathrm{~N} 4$ bond length $[1.145$ (3) A] and the $\mathrm{C} 5-\mathrm{C} 25-\mathrm{N} 4$ bond angle $\left[177.5(3)^{\circ}\right]$ are comparable with previously reported values of 1.136 (9) \AA and 177.2 (8) $)^{\circ}$, respectively, in a 1,6-naphthyridine derivative (Gomez de Anderez et al., 1992). The bond distances $\mathrm{C} 1-\mathrm{C} 9$ [1.491 (3) \AA] and C3-C15 [1.489 (3) Å] are slightly longer than normal Csp ${ }^{2}-\mathrm{Csp}^{2}$ values. This is due to the π-electron repulsion of the bulky substituted phenyl rings at C 1 and C 3 . The $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{C}$ distances in the structure agree well with literature values (Allen et al., 1987). The bond angles $\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 7$ [127.1 (2) ${ }^{\circ}$] and N5-C6-C5 [125.1 (2) ${ }^{\circ}$] are larger than the normal value of 120°. This is due to the steric interactions imposed by the substituents.

The naphthyridine ring system is almost planar and there is a dihedral angle of $5.4(1)^{\circ}$ between the pyridyl rings. The two phenyl rings substituted at C 1 and C 3 of the naphthyridine ring system are inclined at angles of 53.1 (1) and $19.8(1)^{\circ}$, respectively. The dihedral angle between the pyrrolidine and naphthyridine rings is $20.9(1)^{\circ}$. The pyrrolidine ring adopts a half-chair conformation which was confirmed using the ringpuckering parameters (Cremer \& Pople, 1975) $q_{2}=$ 0.342 (4) \AA and $\varphi_{2}=91.6(6)^{\circ}$, and the asymmetry parameter $\Delta \mathrm{C}_{2}(\mathrm{~N} 5)=0.006$ (1) (Nardelli, 1983). The amino N3 atom deviates by 0.244 (3) \AA from the mean plane of the $1,6-$ naphthyridine ring. The orientation of the substituents on the 1,6-naphthyridine ring may be described by using the following torsion angles at $\mathrm{C} 1, \mathrm{C} 3$ and $\mathrm{C} 6: \mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 9-$ $\mathrm{C} 14=-124.2(3), \mathrm{C} 8-\mathrm{C} 1-\mathrm{C} 9-\mathrm{C} 10=51.7(3), \mathrm{C} 2-\mathrm{C} 3-$ $\mathrm{C} 15-\mathrm{C} 20=-166.5(3), \mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 15-\mathrm{C} 16-158.8$ (3),

Figure 1
The molecular structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.
$\mathrm{N} 2-\mathrm{C} 6-\mathrm{N} 5-\mathrm{C} 24$ 13.4(4) and $\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 5-\mathrm{C} 21=$ -176.4 (2) ${ }^{\circ}$.

The structure is stabilized by weak intermolecular C $\mathrm{H} \cdots \mathrm{N}$ interactions [C28-H28B 0.97, H28BNN1 $1^{\mathrm{i}} 2.58$, $\mathrm{C} 28 \cdots \mathrm{~N} 1^{\mathrm{i}} 3.478$ (4) \AA and $\mathrm{C} 28-\mathrm{H} 28 B \cdots \mathrm{~N} 1^{\mathrm{i}} 154^{\circ}$; symmetry code: (i) $-x, 2-y, 2-z]$ in addition to van der Waals forces.

Experimental

The title compound was synthesized from a solution of $4-N, N-$ diethylaminobenzylacetophenone $(2.4 \mathrm{mmol})$, malononitrile $(4.8 \mathrm{mmol})$ and a few drops of pyrrolidine $(4.8 \mathrm{mmol})$ in ethanol refluxed for 25 h . The reaction mixture was concentrated under reduced pressure and purified by column chromatography over silica gel (m.p. 493-495 K) (Murugan et al., 2000). Single crystals were grown by slow evaporation of a methanol solution of the compound.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{6} \\
& M_{r}=462.59 \\
& \text { Triclinic, } P \overline{1} \\
& a=11.117(3) \AA \\
& b=11.1824(11) \AA \\
& c=11.3444(10) \AA \\
& \alpha=70.906(8)^{\circ} \\
& \beta=83.953(12)^{\circ} \\
& \gamma=67.355(12)^{\circ} \\
& V=1229.6(3) \AA^{3}
\end{aligned}
$$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.249 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

$$
\text { Mo } K \alpha \text { radiation }
$$

$$
\text { Cell parameters from } 24
$$

reflections

$$
\theta=3-25^{\circ}
$$

$$
\mu=0.076 \mathrm{~mm}^{-1}
$$

$$
T=290(2) \mathrm{K}
$$

Parallelepiped, yellow

$$
0.63 \times 0.36 \times 0.30 \mathrm{~mm}
$$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: empirical via ψ scan (North et al., 1968)
$T_{\text {min }}=0.954, T_{\text {max }}=0.978$
4564 measured reflections
4323 independent reflections
2715 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.039 \\
& \theta_{\max }=24.97^{\circ} \\
& h=-13 \rightarrow 13 \\
& k=-12 \rightarrow 13 \\
& l=0 \rightarrow 13 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 200 \text { reflections } \\
& \text { frequency: } 60 \text { min } \\
& \text { intensity decay: }<3 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}

> H-atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1 P)^{2}\right]$ where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.35 \mathrm{e}^{-3}$
> $\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: PARST (Nardelli, 1995).

Table 1
Selected geometric parameters ($\AA^{\circ},{ }^{\circ}$).

$\mathrm{N} 1-\mathrm{C} 3$	$1.334(3)$	$\mathrm{N} 5-\mathrm{C} 6$	$1.356(3)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.357(3)$	$\mathrm{N} 5-\mathrm{C} 24$	$1.458(3)$
$\mathrm{N} 2-\mathrm{C} 7$	$1.324(3)$	$\mathrm{N} 5-\mathrm{C} 21$	$1.472(3)$
$\mathrm{N} 2-\mathrm{C} 6$	$1.354(3)$	$\mathrm{N} 6-\mathrm{C} 12$	$1.370(3)$
$\mathrm{N} 3-\mathrm{C} 7$	$1.344(3)$	$\mathrm{N} 6-\mathrm{C} 26$	$1.441(4)$
$\mathrm{N} 4-\mathrm{C} 25$	$1.145(3)$		
C6-N5-C24	$125.9(2)$	$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 8$	$122.9(2)$
$\mathrm{C} 6-\mathrm{N} 5-\mathrm{C} 21$	$122.1(2)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 25$	$124.9(2)$
$\mathrm{C} 24-\mathrm{N} 5-\mathrm{C} 21$	$111.4(2)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 25$	$116.7(2)$
$\mathrm{C} 26-\mathrm{N} 6-\mathrm{C} 28$	$116.6(2)$	$\mathrm{N} 2-\mathrm{C} 6-\mathrm{N} 5$	$113.8(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 8$	$117.5(2)$	$\mathrm{N} 5-\mathrm{C} 6-\mathrm{C} 5$	$125.1(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 9$	$117.9(2)$	$\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 7$	$127.1(2)$
$\mathrm{C} 8-\mathrm{C} 1-\mathrm{C} 9$	$124.5(2)$	$\mathrm{C} 14-\mathrm{C} 9-\mathrm{C} 10$	$116.8(2)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 15$	$114.7(2)$	$\mathrm{N} 5-\mathrm{C} 24-\mathrm{C} 23$	$103.7(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 15$	$123.2(2)$	$\mathrm{N} 4-\mathrm{C} 25-\mathrm{C} 5$	$177.5(3)$
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	$116.8(2)$		

LG is thankful to the Council of Scientific and Industrial Research (CSIR), Government of India, for financial assistance in the form of a Senior Research Fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1556). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Balogh, M., Hermecz, I., Naray-Szabo, G., Simon, K. \& Meszaros, Z. (1986). J. Chem. Soc. Perkin Trans. 1, pp. 753-757.
Chen, K., Kuo, S. C., Hsieh, M. C., Mauger, A., Lin, C. M., Hamel, E. \& Lee, K. H. (1997). J. Med. Chem. 40, 2266-2275, 3049-3056.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Damon, R. E. \& Nadelson, J. (1981). Chem. Abstr. 95, 7251c
Di Braccio, M., Roma, G., Grossi, G., Ghia, M. \& Mattioli, F. (1997). Farmaco, 52, 49-53.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Gomez de Anderez, D., Helliwell, J. R., Dodson, E. J., Piniella, J. F., Germain, G., Alvarez-Larena, A., Teixido, J. \& Victory, P. (1992). Acta Cryst. C48, 104-106.
Hong, C. Y., Kim, Y. K., Chang, J. H., Kim, S. H., Choi, H., Nam, D. H., Kim, Y. Z. \& Kwak, J. H. (1997). J. Med. Chem. 40, 3584-3593.

Mohan, C. G. \& Mishra, P. C. (1997). Indian J. Biochem. Biophys. 34, 429-434.
Murugan, P., Raghukumar, V. \& Ramakrishnan, V. T. (2000). Synth. Commun. In the press.
Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Reed, J. N., Rotchford, J. \& Strickland, D. (1988). Tetrahedron Lett. 29, 57255728.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Singh, B., Bacon, E. R., Lesher, G. Y., Robinson, S., Pennock, P. O., Bode, D. C., Pagani, E. D., Bentley, R. G. \& Connell, M. J. (1995). J. Med. Chem. 38, 2546-2550.
Vinick, F. J. (1989). Tetrahedron Lett. 30, 787-788.
Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

